
AD-767 710

OPTIMAL ALLOCATIONS IN THE CONSTRUCTION
OF k-OUT-OF-n RELIABILITY SYSTEMS

Sheldon M. Ross, et al

California University

Prepared for:

Office of Naval Research
Army Research Of f ice - Durham

September 1973

DISTRIBUTED BY:

Kfiji
National TicNnical Information Sonrico
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

mmmtt HMMna —- ■-"■"■■ ■ ■ ■ 'i- jiMl^teaHM mmm r ii II«*JMI(VIV U-^*.^-»^'-.^.***

•»■Illll I I IIIIIBI.IIIIU« II -..--,.-.-

OK 71-17
^%

1971

OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF
k-OUT-OF-n RELIABILITY SYSfEMS

by

SHE10ON M. ROSS,

OftUS DERMAN and

GERALD J. UEBERMAN

©;

I»

a

ft) OCT 15 l97,
Repru-I

NATIONAL TECHNICAL /[hi
INFORMATION SERVICE

l) S DfBorln f,t, < Commerc«
Si^.^yf^rM VA 22151

c
lOPERATIONS

RESEARCH
CENTER

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA • BERKELEY

i

z<*

*mmm !H . mnimmimmm 'mmm W, ..!!'.- I ■»!. II ,lHl.|imil,H|.li|),|iiiiii ..IIUUIIJ;,. "t!""V '«mwwjiin ^^w-T-r-^TT'v TSSS

OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF k-OUT-OF-n RELIABILITY SYSTEMS

by

Sheldon M. Ross
Department of Industrial Engineering

and Operations Research
University of California, Berkeley

and

Cyrus Derman
Civil Engineering

Division of Mathematical Methods
and Operations Research

Columbia University
New York, New York

and

Gerald J. Lieberman
Operations Research Department

Stanford University
Stanford, California

SEPTEMBER 1973 ORC 73-17

This research has been partially supported by the U.S. Army Research
Office-Durham under Contract DA-31-124-ARO-D-331 and the Office of
Naval Research under Contract N000U-69-A-0200-1036 with the University
of California. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

inn HMMI
J..a.—^.^i.J—i»..-.^,....■■ .■■ ,.„...—y, ,^,i^gg|

,..,ipum^iwiii.iuui upminitiwjwwuyuj.i •i'*»m»>y. '■■■u<i.l»6,i.WT.M.T,i^w^„..tT^rA,,^...
"^^^-"-'^-"■'.'^W'T-

Unclassified
Soi'tintv Cliissidcation

DOCUMENT CONTROL DATA R&D
Sr\iitit: i Ut*»IticMfan vl ttltv, htttlv tii »ihslMCt «#iii ttic/i-Krn^ •ifinufiifjtin nuivf ttv vittvrvll uhtn fin- uvt'r.ff/ report is ctusvificd)

1 O'viOlNATING AC Tl VI TV (ItOlpOHttt «tiif/mf)

University of California, Berkeley

i«. HIPOHT SECURITY C I *Sil F IT. » TION

Unclassified
>h, COOP

) N r p o ft t r i t L r

OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF k-OUT-OF-n RELIABILITY SYSTEMS

4 OESC RIP T l v fc: NOTES (TVpr of rrpopf Nridamcfij*fvr c/art**)

Research Report
Au THORISI (first name, middle initial, lant name)

Sheldon M. Ross, Cyrus Derman and Gerald J. I'v-berman

6 Rf PC« T D* TE

September 1973
a.l. CON TRACT OR GRANT NO

NO0OU-69-A-0200-1036
b. PROJEC T NO

NR 042 238
r.

Research Project No.: WW 0A1

7«. TOTAL NO. OF PAGES

21
7b. NO OF REFS

9a, ORIGINATOR'S REPORT NUMBERIS)

ORC 73-17

tb. OTHER REPORT NOISI (Any other number« (fill may he mtslgned
this report)

I'' DISTRIBUTION ST ATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

'-PPLSLMENTARY NOTES Also 8Upp0rted by ttlB

U.S. Army Research Office-Durham under
Contract DA-31-124-ARO-D-331.

12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217

1 iMSTRACT

SEE ABSTRACT.

d&L
DD,'r:.,1473 "■«* "
S/N 0101-807-681 1

Unclassified
Srcuntv Classificntion

A-.11 «OH

'■-'•" ■ ..*^mmammmmmaam^rmfttttBtm*0amtt ^ , ■ .^.^^.i-A.. . -^^y,,^. ^ |W ^.^

Unclassified
Security ClHxsifii'ation

K c v wonos

Reliability

k-Out-of-n

Optimal Policy

Sequential Case

Allocating Resources

Dynamic Programming

DD .?oR:„1473 I«ACK)
'. M ' 1 • - ,1 ' - ■ I

//

Unclassified
Sprutily Clar.sifirntion

1

■»■^"•fci^' -' m I I irni i n^^^ggigmmgD

mmmmmmmmmmm •' *• IWWWBIIIWlll)' ' '• ,"1"1 •*!'' ' ' »"...■^^a»RWJHj»lwii»»ffFMii«-.;!"»;'iif,1Mvn'■"^T^T-^t'^f^^i-BWW^^^

I

ABSTRACT

We want to build n components so as to form an n com-
ponent system which will function If at least k of the
components function. If x dollars Is Invested In building
a component, then this component will function with prob-
ability P(x) . Given a total Income of A dollars, the
problem of Interest is to determine how much money we should
invest in each component so as to maximize the probability
of attaining a functioning system. This problem is con-
sidered both in the sequential and in the nonsequential case.
Conditions under which it is optimal to allocate A/n units
at each stage, when A is your initial fortune, are
presented. The special case P(x) = mln (x,l) is also
considered in detail.

///

mmum — — — i Htttft ^_.^.-_

Ifpnwmin...iIIJ^IIJII iiii»iii.jwlii,>i,vlip,l|,iiLji,it,!i,,w,JB,i , ,r. 1 - -'■• ■U'BW i.yinsmi}., . 7 ■ utmi

OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF

k-OUT-OF-n RELIABILITY SYSTEMS

C. Dennan, G. J. Lieberman, S. M. Ross

1. Introduction.

We want to build n components so as to form an n component

system which will function if at least k of the components function.

If x dollars is invested in building a component then this component

will function with probability .PCx), where P(x) is an increasing

function such that P(0) = 0. We have a total income of A dollars.

The problem of interest is to determine how much money we should invest

in each component so as to maximize the probability of attaining a

functioning system. We will be interested in this problem both in the

sequential and in the nonsequential case. In the sequential case we

assume that the individual components are built sequentially in time and

that knowledge as to whether or not a component functions is available

to us before we have to allocate our investment in the next component.

In the nonsequential case it is assumed that all allocations must be

simultaneously made.

In Section 2 of this paper we consider the case k =s 1 and

present conditions on P(x) under which it is optimal to put an equal

investment in all n components and conditions under which it is optimal

to put the total fortune A into a single component. In Section ^) it

1

■' ■■'—' ■ ■ ■ ,

 ■■^- '■ ■ '■ - " -.-^J

"W"1 \ ... '■ ,m-',K' ' ' '■' W.l I ■« ■»•:-" ■■»'■>» '»■■»»i....W..^-.,.^— „.j,,^, „. ,

is shown that the "equal investment" condition carries over to the case

of general k. In Section h we consider the special case P(x) = x

in the sequential situation and determine the optimal policy when k = 2.

A conjecture as to the optimal policy in the general case is also made.

Several remarks are made concerning the non-sequential case with P(x) = x

(considered in [l]) in Section 5. In the final section we consider a

related problem.

2. The Case k = I.

When k = I the sequential and nonsequential cases are identical:

both are involved in determining x = (x., ••• , x) with x > 0,
n n
2J x. = A so as to maximize [l - II (I - P(x.))], the reliability in the
1 l n i-l
latter case, and the identical expression p(x.) + li & (^"P(X4)) P(x.|)

1 i=2 j=l J i

in the former case. The interpretation of x is that x. dollars is to

be invested in component i in the nonsequential case, and, in the

sequential case, x dollars is to be invested in the ith attempt if the

first i-l attempts to build a functioning component are unsuccessful.
n

The above is equivalent to choosing x,, ... , x , x. > 0, 2 x. = A

n

so as to minimize 2] ^0g(^ " P(x.j))«
i=l 1

Proposition I;

(a) If log(I - P(x)) is convex then the optimal allocation is

Xl " X2 = = xn = A/n

•

'*'--- ■ ■ M^Miia» MMiÜM afJ*— '•' ■>

-,.,.

■ -viiiir 1 miitoiimJM^aiaia

in iimmmf^^mmm^mmm'^**"- ' " '*.<m:-w~'—' ' ■»«■■> —yy n pmniniru m .1 .iw]i.i.Mi"i._it!

(b) If Iog(1 - P(x)) is concave then an optimal allocation is

x. = A. x0 = ••• = x = 0 .
1 ' c n

Proof; Follows from standard results about concave and convex

functions. jj

Remarks;

(i) In part (b) the condition that log(1 - P(x)) be concave can be

weakened to the condition that log(1 - P(x)) be subadditive,

i.e., that is, (1 - P(x + y)) < (1 - P(x))(l - P(y)).

(ii) The condition that log(1 - P(x)) be superadditive, i.e.,

(1 - P(x + y)) > (1 - P(x)) (1 - P(y)), would not be sufficient

to establish part (a). It would, however, necessarily imply that

the optimal x vector would have all positive components.

3. The General Case.

Part (a) of Proposition 1 remains true in the general case.

Theorem 1; If log(1 - P(x)) is (strictly) convex then when one wants

to sequentially build k working components in at most n attempts,

n > k, then it is (uniquely) optimal to allocate A/n at each stage

when A is your total resources.

 • - -"-" ■ ■■■ r 1 i^iii^fi 1 1

MMK

l'l^|•|l■"l,l '..""'■-i"wwp»iwmf
PTTT-y-B^... I.IHI.,11 l4.lWU|l.mnUIHf|ym-.ymW|,g.,^T *>igwi>..v«vi jymww-wvvw"

Proof: Assume first that log(1 - P(x)) is strictly convex. The proof

is by induction on k^ and^ as we have already proven the result when

k a I let us assume that it is true for all values less than k. Now

consider the k component case. If the number of possible stages is

k then a policy reduces to a vector (x-, ... , x.) where x. > 0,
k 1 k i

V x, < A^ with the interpretation that the policy invests x. in the

1

first stage and if the first i-1 stages all result in working components

then x is invested in the ith stage. (That is, when the number of

available stages is identical with the number of desired components then

the sequential problem reduces to the nonsequential one.) Thus, the
f,

problem reduces to

k k
Maximizing II P(x.) subject to x > 0, ^ x< = A

i=l I 1 1 1

or, equivalently, to,

k k
Maximizing Y log P(x.) subject to x > 0, ^ x = A.

1 1 t 1

New the strict convexity of log(1 - P(x)) implies that log(P(x)) is

strictly concave (see the following Lemma 1). Hence, by standard

arguments, it follows that x = A/k, i = 1, ... , k is the (unique)

optimal allocation and the result is established in this case.

Thus the result is true in the k component case when the

nuober of stages is also equal to k. So let us assume that the result

*>olds in the k component case whenever the number of stages is less

t.ian n and try to prove that it also holds when the number of stages

;

^.^HHMiM
 / ■

'""""■■■'i"1 PPIS^PPl.lWJ'1 "111. >llll.,ll>JJMIH.P|P?|MPN.I..l ' ' -- l.-.f^JU«."---—-»—- ■,-^-,->.,,„ «„T,,, ^y, „„^„.„.^^.„j^^-.-^f.-^^m.-^-Tr™». fll V>|.UWITK^

equals n. To do so suppose that an optimal policy for a k-component

n-stage problem initially allocates an amount x.. Now if this initial

attempt is successful then the induction hypothesis (on the number of

desired components) tells us that it is uniquely optimal from that point

on to allocate (A-x,)/(n-l) for each of the remaining n-1 stages. On

the other hand even if the initial attempt is unsuccessful then as there

are only n-1 stages to go it follows by the induction hypothesis on the

number of stages in the k-component case that it is still optimal to

allocate (A-x.)/(n-l) on each of the remaining n-1 stages. If

x, - A/n then the result is proven. So let us suppose that x. ^ A/n

and obtain a contradiction. If x. /£ A/n then consider the policy that

allocates -^ [x, + (A-x.)/(n-l)] for each of the first two stages and

then allocates (A-xl)/(n-l) for each of the last n-2 stages. This

policy is thus identical with the optimal policy during the last n-2

stages. Now the probability that at least one of the components built

during the first two stages is successful is

(1) 1 - [1 - P(c1)][1 - P
A-x,

nTT

under the optimal policy; while it is

(2) ■Hih-^ll]

1

It is easy to show that an optimal policy exists for the n stage
problem. This is done by first proving recursively that the optimal
value function for an n stage problem is a continuous function of the
initial fortune whenever P(x) is continuous. An optimal policy then
exists since a continuous function obtains its maximum on a closed sot.

■
-■■-■■■ -

rTwi^^srwffiWÄT^^irwr"

under the new policy. Also the probability that both components are

successful Is

(3)

for the optimal policy^ while it is

CO
/1 r A-Xii
[2 [xi+ "sri

for the new policy. It follows by the results given for k » 1 that

(2) is greater than (1), and it follows from that fact that log(P(x))

is concave (Lemma 1) that (k) is greater than (3). Hence, under the new

policy the number of successes during the first two stages is stochastically

greater than it is under the optimal policy. As the two policies are

identical after the first two stages it thus follows that the probability

of at least k successes is greater under the new policy than it is

under the optimal policy. This contradiction shows that x = A/n,

which proves the result in the k-componenf. case for any number of stages,

which also completes the initial induction proof.

If log(1 - F(x)) is convex but not strictly so, then we can

approximate log(1 - P(x)) arbitrarily closely by functions that are

strictly convex and then apply a continuity argument. |

The following lemma was used in the proof of the theorem.

■ ■ 11 11 mmtiätmu*****. *m**miittttättM ~i^ - -:" '--

Buwiw.»'" ' i
■in miiiiki [HJII ii»t

|winiiBj?it..iii.»'» .1 ilUHpnnni J^IMJ „^F„,,r^^, • ■■■" ■■.■■.- .1. lUuiiiUPini. ■^-"•"T^s» ■^rTH

I

Lemma 1; If 0 < P(x) < 1, and log(1 - P(x)) is convex then

log(P(x)) is concave.

Proof; Suppose the hypothesis of the lemma are true. Then

^ d2 . .. D. ,, P(x) V"(x) - (P'(x))2 - P"(x)
o < —r log(1 - P(x)) = s / ^ / i ^-k1 >~-J-

dx (1 - PCx))'

implying that

Now.

F (x^ - 1 - P(x) - 0

dx^

which is negative since P"(x) <

jf log t(.x) __ P(x) P"(,) - (P'(x))g

('(«))

o. a

Remarks.

(i) It follows from Theorem 1 that when log(l - P(x)) is convex the

optimal sequential policy is nonsequential is nature, and is

thus also the optimal policy when the allocations for each stage

must be made simultaneously rather than sequentially.

(ii) If we think of P(x) as being a probability distribution function

then the condition that log(1 - P(x)) be convex is equivalent to

the condition that P(x) is a decreasing failure rate distribution.

Since mixtures of decreasing failure rate distributions are them-

selves decreasing failure rate distributions it thus follows that

log(1 - P(x)) will be convex whenever

7

■ ._. .

' ■ IM^MHIIIIII n i, , fi nttf f-i-^af in fii

■ u^iuii.iijySPy^ljPflpilPPP^ .■'■'■l •■■'"i '-mw.*»" -—^ .lllllipiBW^.IWtiyJIiMllifilil-^TW-

where

and

P(X) = / PJx) dp(a)
a

log(1 - Pu'x)) is convex for all a,

F(Cl') is a probability distribution function.

In particular, any P(x) of the form

P(x) = / (1 - e"001) dF(a)
a

will be such that log(1 - P(x)) is convex,

(iii) If we let V (A) denote the probability that at least k successes

will occur in the n stages under an optimal policy then from

Theorem 1 it follows that

VJA) = I (") (P(Vn))1 (1 - P(A/n))
n i=k

n-i

If P(x) is differentiable then

P(x) lim ijp^ = lim P'Cx) = P'CO) = \;
x -»0 x -»0

and thus from the Poisson approximation to the binomial distribution

it follows that

VJA) t e-M % (M)kA.'
i=k

n'
as n t oo

(This is so since V (A) = Prob{Bin(n, P(A/n)) > k where

Bin(n, P(A/n)) represents a binomial random variable with

parameters n and P(A/n) .) It should be pointed out that this

convergence is not necessarily monotone for an arbitrary differ-

entiable function P(x) with P(0) = 0.

8

ttmamttmnatmu^ta ■ i i i iiini riMMMMM>».-i-i i niitmtmmtm — .

IP.'»' HI- ■! ' , ; .mn.iiiyii ,i IP.HHUI Mwniynrx-c^^' -i .v»?<«wi.i.w>'-f^ i'»!!.."^'^^

If. The Sequential Case P(x) = x.

While the analogue of part (a) of Proposition 1 remains true

in the case of arbitrary k it is obvious that the same cannot be said

of part (b). In this section we consider the special case P(x) = x.

Suppose that we need to sequentially build two (k = 2) function-

ing components in at most n attempts when P(x) = min(x,1). Suppose

that our initial fortune is A and consider the policy v which sequentially

allocates A/n at each stage until a functioning component is built, and,

at this point all ...tes all of the remaining fortune xor tne next stage.

In other words if our present fortune is y and at most r additional

components can be built then

(a) if two additional functioning components are still needed then v

allocates y/r for the next component*

(b) if only one additional functioning component is needed then TT

allocates y for the next component.

Denote by U (y), the probability that two functioning components

will be built when our initial fortune is y and policy ir is employed.

Proposition 2: For y < 1

"„(y) (i -*) ty - i

Prjof; By conditioning on the time of the first successful component we

see that

r=l nv n' n

v hich simplifies to prove the proposition. |

9

MMMMM I Ml ■! il ■ i i ■-""--■-■iiM ! i- ii■ ir'Miiirtr*

jf/mti, i ii.j.ini i ..mmi .mm.j,,.fii.'- w.Mimy.iw-vwwv!^.j»wyJ.7j1.t.J^Wpp,.v^^,i^J^it.,wlw^^w

The next proposition states that U (y) satisfies what, in

dynamic programming terminology, is known as the optimallty equation.

Proposition 3: For y < 1

U (y) = Max [x(y-x) + (1-x) Un.l
(y"x)1

0 < x < y

Proof: Define

£(*) = x(y-x) + (I-x) Un-l(y-x)

= x(y-x) + (1-x

Differentiation yields

n.n-1
+ y - x - ll

f'(x) = (l-x) ll -^f]n
n-l

n-1

implying that f'fx) = 0 If and only if

1 1 Zl* 1 - x = 1 - *—r
n-l

or

Since f"(y/n) = 0, it follows that f(x) attains its maximum value at

x = y/n. This proves the result since f(y/n) = U (y).|

Theorem 2; For an initial fortune of A < 1 the policy ir maximizes the

probability of obtaining two functioning components.

\

10

'■ '"'-"—' -' I—Ml _
-—-- ■■ - HJ

 »«w 1 »;«IJ ■.mi,.m,m\.m*p.mttmmm!*':,'vi'm •'■ ■ <«i«^nw.-m—:-im i .<.',(iii.i.iiji|niM«.^nfi mi ^BKflUUM.-.T,!""---:'«"'"^'^■■rm iijlip^BjU

miwil»» IM»—W—aiMIIIIIIW—WIIBI1I lim

Proof: From Proposition 5 we see that

(5) Ujy) > x(y-x) + (1-x) U .1(y-x) for all 0 < x < y

The right side of the above can be interpreted as the return (i.e.,

probability of obtaining two functioning components) if x is allocated

for the first stage and then policy w is used for the remaining stages.

As the inequality (5) holds for all x, 0 < y < x, and^ as we already

know that ^ is optimal when only one additional functioning comtonent

is needed (Proposition 1), we can interpret (5) as stating that using

policy TT is better than doing, anything else for one stage and then

switching to TT. Repeating this argument yields that using TT is better

than doing anything else for two stages and then switching to TT. Finally,

by repeating the same argument a total of n times we .ee that using

policy TT is better than doing anything else for the first n stages.

This completes the proof. §

K

Remark:

Since Theorem 2 states that U (y) is the maximal probability when

at most n stages are available it follows that U (y) is an Increasing
n

function of n and thus, for 0 < y < 1,

n
U (y) = (1 - £) + y - 1 t e"y + y - 1 as n t «,

(This constitutes another proof that the convergence of (1 - —) to

e is monotone when 0 < y < L) In fact, for any positive y it it well

known and can be easily shown that the convergence is monotone for all

n > N where y/N < 1.

HMHM mm Mt^M - -- - ._. _ -._— _^ - •■ --■■■■ ■■ -• ■ I . •

■pi .' ' .l1"^". *'*~*rf!'*' JW^'Vfmi.! ly^v^m^,.. ■m':\.rjr^rmiLj!*v-w^ -!T*y*'~-■--*■■-. »n■imiiwjpivii^.|n(ifli.iini,ii^i .^.IJH.IJUIJI«! (

The policy TT is no longer optimal when our initial fortune

can be greater than 1. Let us define the policy TT* to be such that

when the present fortune is y and at most n additional components

can be built.

(a) allocates y if only one additional working component is needed;

and

(b) if two additional working components are needed, allocates

n
y - i

1
n

if y>n-l

n
lf ^n-l

If we let V (y) denote tne probability of a success (two working
n

components) when our initial fortune is y and policy TT* is employed

y n* 1
then, as y < n/(n-l) implies that y - ^ < -30 t

it fo11«»" that, for

0 < y < 2

"(y) if y <-iT ' — n-1
vn(y) - (

y - It (2-y) 11^(1) if y> Jj

or, equlvalently, for 0 < y < 2

vn(y) =

(i.Z) +y. x if yi^rr

(2-y)(^f)n"l + y- 1 if y>^

Theorem 3; Policy ir* is optimal.

Proof: The proof would follow exactly as in the proof of Theorem 2,

if we could show that

12

■MM — ti

Hl.i.iJ HI iiji ijWiilllllJIWWIIIiPWff*'^»'^. "■" i™-'g«-.-"g" ..nHp..^«^^^^!.^.!!;)!!^.»! a w». ivigr^m - .!■ JJII'II.^I--" ' w **:*rwr,-r,-~rmt~iw* .mjUWmiH

(6) Vn(y) >xMln(y-x, 1) + (1-x) V^^y-x) for all x <Min(l,y)

When y < l, (6) Is Identical to (5) and thus we only need prove (6)

when 1 < y < 2. Hence we must show Lnat, for 1 < y < 2,

(1) V(y)>Max Max (x + (1-x) V (y-x)),
U; n' ' - Lo<x<y-l n-1

Max {x(y-x) + (1-x) Vn-1(y-x))
y-1 < x < 1 * J

We consider 2 cases.

Case 1. y < ~J .

Now.

Max (x + (1-x) V^y-x))
0 < x < y-1

y-x n-1
Max {x + (1-x) [(1 - ^)" ' + y - x - 1])

0 < x < y-1

Define the function f(x) by

n-1

Now.

and

f(x) =x + (i-x) [(i -£fr * + y - x - U

f(x) = i + (i-x)[(i-^)n'2- n - ^-^r1 - y + ^ !

.x.n-3 n-2 n-2

■■<«) - d-) (H) fl ■ B"'J - (l - H)"" ^ - (l ■ B 20

15

■

MMMMMMMM^a^MlMI . - ._dM^I

""•"•"mmmmpim iT^iun-j,. w.wwvyw-i--yiw..•**'***,*•<•<•<■ <. •<i"-mimw v "- -^-u „■...>^..^.,...t,WTWrr,jJ,,^«iiimBpiipuBupii ■■ -.-.-^i n. ,.,i.,,wg

Hence f(x) is a convex function in the region 0 < x < y-1, and thus

obtains its maximum value in this region either at x = 0 or x = y-1.

Now
n-1

Ho) = (i --^x) +y- i

and

,n-2 n-1
f(y-l) = y - 1 + (S-y) (~f)

Now the function

8(y) = f(y-i) - vn(y) = (2.y) (^f)n" - (i - ^)n

is zero at y = —r . Differentiation shows that it is an increasing
n-1 '

function when y < —r and thus it follows that - n-1

f(y-l) <y - I + (I -*) = Vn(y)

y n

As was previously noted {I - —) is increasing in n, it follows that

f(0) < Vn(y); thus,

Max f(x) < V (y) when y <-£1T
0 < x < y-1 n " n*1

Also, since when y < —r , the inequality ' — n-1 ' -

Vn(y) > Max {x(y-x) + (1-x) Vn ,(y-Jc))
y-l<x<l n'1

is identical to the Inequality (5), it follows that (7) is established

when y < —r . We are thus ready for
' — n-1 '

Ik

i

JtaM ^nHMmmm tmmäm—mm^m**-.

PWW^TT'PWW'WwWTnW"""^^

Case 2; y > "^r ——— — n-1

In this case

Max (x(y-x) f (1-x) V .(y-x))
y- 1 < x < I

Z-XN
n-1

Max {x(y-x)+ (1-x) [(I - f—) + y - x - 1]}
y-1 < x < 1 n-1'

Now the function in brackets above is a decreasing function of x for

x > y-1 (to show this we use the fact that x > y-1, y >—r implies

that nx>y), and thus the Max above is equal to

n-9 n-l
= y - i + (2-y) (^f)

= Vjy)

Hence if we can show that V (y) > Max g(x) when y >-"j; ,
n 0 < x < y-1

where g(x) is defined by

g(x) = x + (1-x) V^^y-x) ,

then the proof will be complete.

Now, let us suppose that y > —^r . Then — n-c

Max g(x) = Max
0 < x < y-1

Max

0 % x < y

g(x), Max g(x)
n-1 n-1 . - ,

y - -z-z <* < y-1
n-2 n-2 - " -

But

Max

0 < x < y -

n-2
g(x) = Max {x+(l-x)[(2-y+x) i^)" "+y-^-^) n-2'

Now the function in brackets above can be easily shown, upon differentiation,

to be a convex function and thus it attains its maximum value either at

X

15

IM» i ■ I lllülMMHMnMMM^—ai^aM
 ■ ■ - i. ..*«

^ppililiP^ip^^pplP!^BP^p^^^ ,„mnnimu.wii.iji-niipiiiniamwuiiii,,iii,im,j»wiyimnMW «*.m.> '■ iinniiipi.'.ninwwy npiJMNiuwi^n\mmf.t>m w^.^w^aw«

x = 0 or at x = y - ~2 • Thus

(8)

Also.

n-1,
Max g(x) = Max[g(0), g(y - —g) 1

°<*sy-U

Max g(x) = Max
y-x n-1

/-^<-<y-'

(»+(l-x)[(l ^Ef) ♦ y-x-D)

Now it has previously been shown that the above function in brackets is

a convex function and thus

(9) Max

y-^<*<y-*

n-L
g(x) =Max[g(y-^), g(y-l)l

n-1
Hence, from (8) and (9) we see that when V > ^

(10) Max g(x)
0 < x < y-1

Max

(2-y) {%$ + y - i

n-1

y - i + (2-y) (^f)""1

n-1 On the other hand, when ^-^ > y >-^r , we obtain thac ' n-^ — n-l '

(11) Max g(x) = Max
0 < x < y-1

n-'S n-2

(2-y) (H) + y " 1

n-2 n-l
(2-y) (CT ^ y ■ 1

16

■■— ■■■ —-' —-i*.

*>mm ^^^ww^^^Bwmpwyw^i|iipiiiwip!ni!'°.ii.f..""^w" ii^iiai.iii.iiu»>iJiiii«iiii'j.wi.iiiiif.iii.iiBBpii!ii

With the help of a little algebra we obtain from (10) and (11) that

when y > —T

,n-2 n-1
Max g(x) = y - 1 + (2-y) (^) = Vn(y)

0 < x < y-1

and the proof is complete.

Hence the optimal policy is determined in the case k = 2.

If n = »^ it can be seen that no optimal policy exists. The dynamic

programming functional equation will have a solutionj however^ the

solution is not the return function of any policy. The policy determined

by the solution is the non-optimal policy of allocating x = 0 at

every stage.

In the general case consider the policy ir* which is such that

if our present fortune is y and if k additional working components

are needed with at most n stages to go; then TT* calls for allocating

1
n if y<-!L(k-l)

y - (k-1) if y>-JL(k-l)

(Note that TT* corresponds to the previously defined TT* when k = 2.)

Define V .(y) to be the probability of success under v* wh^n our

present fortune is y and k additional working components are needed

and at most n additional components can be built. If we can show

that

(^) vnjk(y)>
0 < x < min(y^ 1) » '

17

UMMMAWÜM^ MM .4.. „^

^mm~.T"^rm'vr" i" jftiwrnf if • »y v.w,..■■^ff.^Ul.v.^^)||..■^|^^Wl^^|!^l|^a,l,l,l^lJiU^pp^|l,JJ^^^ll.,k^ inm^^w

Chen it would follow that 77* is the optimal strategy. We have, at

present, been unable to verify (12) but we conjecture that it is valid

and that TT* is optimal.

A simple formula for V .(y) in the case y < 1 is obtained

by conditioning on the number of steps required to obcain k-1 success-

ful components. This yields

"ö1 r-1 v k"1 v r-k+i rv

* r=k-l

5. The Non-Sequential Case:- P(x) = x.

The non-sequential case with P(x) = x and general k was

considered in [l] where it was shown that the optimal x vector

x* = (x* x*) is such that all of the non-zero element of x*
— 1' ' n7 —

are equal. A problem of interest is to determine for 0 < y < k that

value of r that maximizes

Q(r) a P (at least k components work}

j=k J r

r-j

for r = k, k+1, ... f n. From Proposition 1(b), r = 1 when k = 1.

In general the optimal value of r is a function of y and k but

at present only seems obtainable by numerical methods. However we

can make several remarks:

(1) If y is near enough to k then the optimal value of r is

r = k. To see this note that when y = k, Q(k) = 1 and Q(r) < 1

18

■ iimaiiritfn if r I ■HMhMMl- - ' - ■ ■ —^-

'^^■■msm^t^miftmwr^f^'^'^^^^-T^''1-''- >>"'«w*'> iim^ .m^mfmm-'^.'^iriiiemmigSK^

if r > k. Since Q(r) is a continuous function of y for each

r the substance of the remark follows.

(2) For every r there exists an e > 0 such that tor y < e ,

Q(r+1) > Q(r) with strict inequality holding if k > 1. Thus,

loosely speaking, for small y the amount of redundancy in the

optimal allocation is large. We show this by considering for

r > k

y ^ 0
Q(r+1) v r' v r+l'

= R(k) (say).

We need only show that R(k) < 1 with strict inequality holding for
ft

k > 1. Now R(l) = I, R(2) = 1 - 1/r < 1. However, as long as

r > k+1,

R(k+1)
R(k)

r+1
r

1 - k+1
r+1

1 - r+1

r+1 r-k
r

1 -

r+l-k

k
r

1 - r+1

< 1

Then, R(k) < 1 for all k > 1 and the proof of the remark follows.

19

■ "^—^■**—MaiM'^-—' ■- ■ , _

■W.WMUJIKIPW* mMlWII .. il mi .. IHUBWII^IIH.. r-r.^T'•■

6. A Related Problem.

Rather than maximizing the probability of sequentially bullding k

successful components within a budget of A we shall now assume that

our budget is unlimited and that the problem is to minimize the expected

amount of money spent in obtaining the k successful components.

Consider first the case k = I. If x is initially allocated and

the component built is not successful (which will occur with probability

1 - P(x); then the situation will be exactly the same as it was before

the initial investment. Hence, if it was initially optimal to allocate

x then it will still be optimal to allocate x for the second component.

Hence a policy corresponds 'to a value x (in dynamic programming termi-

nology we are restricting attention to stationary policies), and the

expected cost to obtain a functioning component under such a policy would

equal x/P(x). Thus, the problem is to

x
Min
x > 0

P(x)

It should perhaps be pointed out that when log(I - P(x)) is convex

then x/P(x) is an increasing function of x and hence no optimal policy

exists. Similarly if log(1 - P(x)) is superadditive then

inf
x .. x = lim

>0PW "x"oPW "^^

and again no optimal policy exists.

20

-— i ' ■ ■ .mr i ■ ^ nn^fc
 . . ■ .

j»«wiwww»»»«^^»mwr^wiiw«^^^--^^ ■ ^ ^--^---»T-^'»-•-^»p-'

The case of general k is solved by noting that it is identical

to the k = 1 problem taken k times. Hence, an optimal (if one

exists) policy would be to invest x* units at each stage until a

total of k working components are obtained, where x* (if it exists)

is such that

^ = Min '
^)%n>o^ '

REFERENCE.

[!] Derman, C, Lieberman, G.J., Ross, S.M., Assembly of Systems

Having Maximum Reliability (to appear in ONR Logistic Quarterly).

21

 ■ —■ — ——

